
 1

UNIX LAB MANUAL

Unix Background Information

Purpose:

Since many of the labs will require knowledge of Unix/Linux, we have included some useful background

information.

Unix-Linux History

In order to understand the popularity of Linux, we need to travel back in time, about 55 years ago…

Imagine computers as big as houses, even stadiums. While the sizes of those computers posed substantial

problems, there was one thing that made this even worse: every computer had a different operating system.

Software was always customized to serve a specific purpose, and software for one given system didn’t run

on another system. Being able to work with one system didn’t automatically mean that you could work

with another. It was difficult, both for the users and the system administrators. Technologically the world

was not quite that advanced, so they had to live with the size for another decade. In 1969, a team of

developers in the Bell Labs laboratories started working on a solution for the software problem, to address

these compatibility issues.

They developed a new operating system, which was

1. Simple and elegant.

2. Written in the C programming language instead of in assembly code.

3. Able to recycle code.

The Bell Labs developers named their project “UNIX.” The code recycling features were very important.

Until then, all commercially available computer systems were written in a code specifically developed for

one system. UNIX on the other hand needed only a small piece of that special code, which is now

commonly named the kernel. This kernel is the only piece of code that needs to be adapted for every

specific system and forms the base of the UNIX system. The operating system and all other functions were

built around this kernel and written in a higher programming language, C. This language was especially

developed for creating the UNIX system. Using this new technique, it was much easier to develop an

operating system that could run on many different types of hardware. The software vendors were quick to

adapt, since they could sell ten times more software almost effortlessly.

Weird new situations came in existence: imagine for instance computers from different vendors

communicating in the same network, or users working on different systems without the need for extra

education to use another computer. UNIX did a great deal to help users become compatible with different

systems. Throughout the next couple of decades the development of UNIX continued. More things became

possible to do and more hardware and software vendors added support for UNIX to their products.

UNIX was initially found only in very large environments with mainframes and minicomputers (note that a

PC is a “micro” computer). You had to work at a university, for the government or for large financial

corporations in order to get your hands on a UNIX system. But smaller computers were being developed,

and by the end of the 80s, many people had home computers. By that time, there were several versions of

UNIX available for the PC architecture, but none of them were truly free and more important: they were all

terribly slow, so most people ran MS DOS or Windows 3.1 on their home PCs. By the beginning of the 90s

home PCs were finally powerful enough to run a full blown UNIX. While there was an academic UNIX-

lookalike called Minix available at the time, its creator, Andrew S. Tanenbaum did not allow modifications

that would make it more generally usable. He wanted his system to stay “clean”, since he created it in order

to teach computer science with it.

Linus Torvalds, a young man studying computer science at the University of Helsinki, used the Minix, and

when he felt too constrained by its limitation, he started to code his own UNIXlookalike operating system.

From the start, it was Linus’ goal to have a free system that was completely compliant with the original

UNIX. That is why he asked for POSIX standards, POSIX still being the standard for UNIX.

In those days plug-and-play wasn’t invented yet, but so many people were interested in having a UNIX

system of their own, that this was only a small obstacle. New drivers became available for all kinds of new

 2

hardware, at a continuously rising speed. Almost as soon as a new piece of hardware became available,

someone bought it and submitted it to the Linux test, as the system was gradually being called, releasing

more free code for an ever wider range of hardware. These coders didn’t stop at their PCs; every piece of

hardware they could find was useful for Linux.

Two years after Linus’ post, there were 12000 Linux users. The project, popular with hobbyists, grew

steadily, all the while staying within the bounds of the POSIX standard. All the features of UNIX were

added over the next couple of years, resulting in the mature operating system Linux has become today.

Linux is a full UNIX clone, fit for use on workstations as well as on middlerange and high-end servers.

Today, a lot of the important players in the hardware and software market each have their team of Linux

developers; at your local dealers you can even buy preinstalled Linux systems with official support–though

there is still some hardware and software not supported.

Linux Filesystem

A simple example of a hierarchical file system is shown in the above figure. Each boxed name represents a

directory, while the unboxed names are files. Linux file names are case sensitive and may contain almost

any character. File names may or may not be followed by an extension like .txt or .cc or html. In fact, the

period in a file name is not given any special significance by a shell, and extensions are rarely required for

a file to be opened by a particular application. However, it is usually a good idea to include an extension for

a file so it is easier for you to figure out what kind of file it is. By convention, executable programs in

Linux usually have no extension.

Any directory that is not the root is usually called a subdirectory. For example, in the figure, usr is a

subdirectory of / and doc is a subdirectory of usr. The directory usr is also called the parent directory of doc

and / is the parent directory of usr. The root directory is the only directory without a parent; by convention,

the root directory is its own parent.

In a Linux filesystem, the bin subdirectory contains programs that correspond to core Linux commands.

The usr subdirectory contains many other parts of the basic Linux system. The home subdirectory contains

the home directories of all the users with accounts on the system. If your username were joe, you could

store your files in the joe subdirectory of home.

The pathname of a file contains a sequence of directories to follow to reach the file. For example, the

pathname of the joe subdirectory is /home/joe. The pathname of the file myfile.txt in the joe subdirectory is

/home/joe/myfile.txt. The pathnames above are called absolute pathnames because they contain all the

information needed to find a file. On the other hand, a relative pathname gives the information necessary to

find a file from a particular point in the tree. For example, from the directory /home, the relative pathname

of myfile.txt is just joe/myfile.txt. Notice that you can tell the difference between an absolute and a relative

pathname by looking for the leading forward slash.

Linux Disks and Partitions

 3

Linux treats its devices as files. The special directory where these "files" are maintained

is "/dev".

DISKS

 Floppy (a:) /dev/fd0

 Floppy (b:) /dev/fd1

 1st Hard disk (master, IDE-0) /dev/hda

 Hard disk (slave, IDE-0) /dev/hdb

 Hard disk (master, IDE-1) /dev/hdc, etc.

 1st SCSI hard disk /dev/sda

 2nd SCSI hard disk /dev/sdb, etc.

PARTITIONS

 1st Hard disk (master, IDE-0) /dev/had

o 1st Primary partition /dev/hda1

o 2nd Primary partition /dev/hda2, etc.

o 1st Logical drive (on ext’d part) /dev/hda5

o 2nd Logical drive /dev/hda6, etc.

 2nd Hard disk (slave, IDE-0) /dev/hdb

o 1st Primary partition /dev/hdb1, etc

 CDROM or 3rd disk (master, IDE-1) /dev/hdc

 CDROM (SCSI) /dev/scd0

 1st SCSI disk /dev/sda

o 1st Primary partition /dev/sda1, etc.

The pattern described above is fairly easy to follow. If you are using a standard IDE disk, it will be referred

to as "hdx" where the "x" is replaced with an "a" if the disk is connected to the primary IDE controller as

master and a "b" if the disk is connected to the primary IDE controller as a slave device. In the same way,

the IDE disks connected to the secondary IDE controller as master and slave will be referred to as "hdc"

and "hdd" respectively Note: Before a filesystems on devices can be used, they must be mounted. In order

to mount them, you must know what they arr called. So for example, if you use a parallel ZIP drive or USB

disk (thumb drive, memory stick, etc.), it will be accessed as /dev/sda (assuming no other SCSI devices) or

/dev/sdb.

Linux File Permissions

Every file or folder in Linux has access permissions. There are three types of permissions (what allowed to

do with a file):

 read access

 write access

 execute access

Permissions are defined for three types of users:

 the owner of the file

 the group that the owner belongs to

 other users

 4

Thus, Linux file permissions are nine bits of information (3 types x 3 type of users), each of them may have

just one of two values: allowed or denied. Simply put, for each file it can be specified who can read or write

from/to the file. For programs or scripts it also can be set if they are allowed to be executed. It is used in

Linux long directory listings. It consists of 10 characters. The first character shows the file type. Next 9

characters are permissions, consisting of three groups: owner, group, others. Each group consists of three

symbols: rwx (in this order), if some permission is denied, then a dash "-" is used instead. Example:

-rwxr--r--

0123456789

Symbol in the position 0 ("-") is the type of the file. It is either:

d = directory

- = regular file

l = symbolic link

s = Unix domain socket

p = named pipe

c = character device file

b = block device file

 Symbols in positions 1 to 3 ("rwx") are permissions for the owner of the file.

 Symbols in positions 4 to 6 ("r--") are permissions for the group.

 Symbols in positions 7 to 9 ("r--") are permissions for others.

r Read access is allowed

w Write access is allowed

x Execute access is allowed

- Replaces "r", "w" or "x" if according access type is denied

Examples:

-rwxr-xr-x

File,

Owner has read, write, and execute permissions,

Group: only read and execute permissions,

Others: only read and execute permissions.

dr-x------

Directory,

owner has read and execute access,

group and others have no access

If a numeric representation is used (like in chmod command, for example), then it is in the octal format

(with the base of 8), and digits involved are 0 to 7. Octal format is used for the simplicity of understanding:

every octal digit combines read, write and execute permissions together. Respective access rights for

owner, group and others (in this order) are the last three digits of the numeric file permissions

representation. Example: "0644". Here the second digit ("6" in the example) stands for rights of the owner,

the third digit ("4" in the example) stands for rights of the group, the fourth digit ("4" in the example)

stands for rights of others.

This table shows what numeric values mean:

Octal digit Text equivalent Binary value Meaning

0 --- 000 All types of access are denied

1 --x 001 Execute access is allowed only

2 -w- 010 Write access is allowed only

3 -wx 011 Write and execute access are allowed

4 r-- 100 Read access is allowed only

5 r-x 101 Read and execute access are allowed

6 rw- 110 Read and write access are allowed

7 rwx 111 Everything is allowed

Useful Commands

 5

Directories

Linux "folders" are called directories. The top-level, root directory is called /. Your home

directory is /home/username. From anywhere you can get back there by typing simply cd The short-hand

name for the directory you happen to be in at any time is called "." and the directory in which the current

directory resides is called "..". Typing "cd .." will move you to the next higher level directory. Several

useful commands for directories are listed below.

Command Function Examples

cd Change directory cd, cd .., cd /home/catyp

pwd Print working directory pwd

mkdir Make a new subdirectory mkdir newdirectory

rmdir Remove a directory rmdir emptydirectory

ls List files in a directory ls, ls –l

Files:

Files reside in directories. Use the ls command (or ls -l for more information) to see all the files in a

directory. Useful commands for manipulating files include:

Command Function Examples

mv Rename (move) a file mv oldname newname

cp Copy a file cp oldname newname

cp oldname dirname/

rm Delete (remove) a file rm filename

rm file1 file2 file3

rm -r dirname

cat Output the contents of a file cat filename

to the screen

file Identify the type of file file filename

head Display the first few lines head filename

of a text file.

tail Display the last few lines tail filename

of a text file.

chmod Change access permissions on files chmod mode filename

ln Creates symbolic link ln -s targetfile linkname

Other Commands:

Command Function Examples

passwd Change your password. Passwd

ps List running processes of the ps -aux

current terminal. If you want to

see all processes of the current

user, use “-a", if you're still not

satisfied with the output, try “-e".

kill Stop a process by passing its kill –TERM process-id

process-id (shown by ps as PID). kill -9 process-id

tar Create / expand / query archives. tar cfv arch.tar somedir/

tar xfv arch.tar

mount Make a device visible in the mount /mnt/floppy

filesystem. For users, this is typically

used to access CD-Roms or floppies.

umount Un-mount a device from a given umount floppy

point in the file system.

df Reports on used disk space on the df file

partition containing file.

find Find files in the file system find path expression

hierarchy

grep Print lines in file containing the grep PATTERN file

 6

search pattern.

ifconfig Configures a network interface ifconfig

exit or logout Leave this session Exit

vi editor:

The most popular editor under unix environment is vi editor, a visual editor. It supports most programming

languages and their syntax. This will be in three modes:

1. Command mode: The default mode where every key pressed is interpreted as command.

2. Input mode: This mode allows us type in the text.

3. ex mode (or last line mode): This mode is used to handle files.

To create or modify a text file, type vi filename <enter> at the shell prompt.

Example: …]$ vi hello.c

The vi editor displays the contents of the file, if it exists. The editor will be in the command mode. Press i

to insert text (Input mode). To return to command mode press [Esc] key. Press : here to get to ex mode.

Commonly used commands

S.No. Command Action

1 h Moves the cursor to the previous character

2 l Moves the cursor to the next character

3 k Moves the cursor to the previous line

4 j Moves the cursor to the next line

5 x Deletes the character at the current cursor position

6 :wq<enter> Saves and quits the editor

7 :w<enter> Saves the file

8 :q<enter> Quits the editor

9 :q!<enter> Forcibly quits even if some changes were made

10 :e<filename><enter> Opens the specified file

11 :r<filename><enter> Reads and inserts the contents of the file after the current line

12 :w<filename><enter> Writes to specified file

13 :w! <filename><enter> Forcibly Writes to specified file

14 :!<command><enter> Executes a shell command

Insert and replace commands

S.No. Command Action

1 a Append text after the current character

2 A Append text at the end of the line

3 i Insert text before the current character

4 I Insert text at the beginning of the line

5 o Insert blank line below the current line and insert

6 O Insert blank line above the current line and insert

Navigation Commands

S.No. Command Action

1 <ctrl>d Scroll down half-screen

2 <ctrl>u Scroll up half-screen

3 <ctrl>F Move a page farward

4 <ctrl>B Move a page backward

5 0 (zero) Move to the beginning of the line

6 $ Move to the end of the line

7 w Move to the next word

8 b Move to the previous word

9 e Move the the end of the word

Editing commands

S.No. Command Action

1 dw Delete aword

 7

2 dd Delete a line

3 cw Change a word

4 cc Change a line

5 J Join lines

6 u Undo the last change

7 . Repeat the last change

8 Y or yy Yank the current line

9 nY or nyy Yank n lines including the current line

10 p Place the yanked text after the current line

11 P Place the yanked text before the current line

Searching commands

S.No. Command Action

1 /pattern<enter> Find the next line containing the pattern

2 ?pattern<enter> Find the previous line containing the pattern

 8

Week – 1

Exercise 1 (Getting Familiar with Linux)

Enter these commands at the UNIX prompt, and try to interpret the output:

 echo hello world

 passwd

 date

 hostname

 arch

 uname -a

 dmesg | more (you may need to press q to quit)

 uptime

 who am i

 who

 id

 last

 finger

 w

 top (you may need to press q to quit)

 echo $SHELL

 echo {con,pre}{sent,fer}{s,ed}

 man "automatic door"

 man ls (you may need to press q to quit)

 man who (you may need to press q to quit)

 lost

 clear

 cal 2000

 cal 9 1752 (do you notice anything unusual?)

 bc -l (type quit or press Ctrl-d to quit)

 echo 5+4 | bc -l

 yes please (you may need to press Ctrl-c to quit)

 time sleep

 history

 9

Exercise 2 (Getting Familiar with Linux)

Try the following command sequence:

 cd

 pwd

 ls –al

 cd .

 pwd

 cd ..

 pwd

 ls –al

 cd ..

 pwd (what happens now)

 cd /etc

 ls –al | more

 cat passwd

 cd ~

 pwd

1. Change back into your home directory.

2. Make subdirectories called work and play.

3. Delete subdirectory called work.

4. Copy file /etc/passwd into your home directory.

5. Move it into the subdirectory play.

Week – 2

SHELL PROGRAMMING

Exercise 3

Write a shell script to generate a multiplication table.

a) Interactive version: The program should accept an integer n given by the user and should print the

multiplication table of that n.

b) Command line arguments version: The program should take the value of n from the arguments

followed by the command.

c) Redirection version: The value of n must be taken from a file using input redirection.

Use the commands read, echo, expr, while, or for.

Exercise 4

Write a shell script that copies multiple files to directory.

a) Interactive version

b) Command line arguments version

Use the commands echo, read, cp, mkdir.

Exercise 5

Write a shell script which counts the number of lines and number of words present in a given file.

a) Interactive version

b) Command Line arguments version

Use the commands echo, read, wc.

 10

Exercise 6

Write a shell script which displays the list of all files in a given directory.

a) Interactive version

b) Command Line arguments version

Use the commands echo, read, ls.

Exercise 7

Write a shell script (small calculator) that adds, subtracts, multiplies and divides the two given numbers.

There are two division options: one returns the quotient and the other remainder. The script requires three

arguments: the operation to be used and the two integers. The operation are specified by options:

 Add -a

 Subtract -s

 Multiply -m

 Quotient -c

 Remainder -r

Use the if and case structures.

Week – 3

Exercise 8

Write a shell script to determine whether a given number is a prime number or not.

a) Interactively.

b) By command line arguments.

Exercise 9

Write a shell script to print all the primes below a given number is a prime number.

a) Interactively.

b) By command line arguments.

Exercise 10

Write a shell script to print the first n Fibonacci numbers.

a) Interactively.

b) Using Command line arguments.

Exercise 11

Write a shell script to find the gcd of two given numbers.

a) Interactively.

b) By command line arguments.

Exercise 12

Write a shell script to reverse the rows and columns of a matrix.

a) Interactively.

b) By command line arguments.

Exercise 13

Write a shell script to find the scalar product of two vectors.

a) Interactively.

 11

b) By command line arguments.

Week – 4

Exercise 14

Write a C program that counts the number of blanks in a text file.

a) Using standard I/O

b) Using system calls

Exercise 15

Write a C program to count the number of words, lines and characters of a given text file.

a) Interactively

b) Command line arguments

c) Using input redirections

Exercise 16

Implement in C the following unix commands using system calls.

a) cat

b) ls

c) mv

Exercise 17

Write a C program that takes one or more file/directory names as command line input and reports the

following information on the file:

a) File type

b) Number of links

c) Time of last access

d) Read, write, and execute permission

Exercise 18

Write a program in C that illustrates how to execute two commands concurrently with a command pipe.

Exercise 19

Write a c program that illustrates the creation of a child process using fork system call.

Week – 5

Exercise 20

Write a C program that displays the real time of a day every 60 seconds.

Exercise 21

Write a C program that illustrates for file locking using semaphores.

Exercise 22

Write a C program that implements a producer-consumer system with two processes (using semaphores).

Exercise 23

 12

Write a C program that illustrates inter process communication using shared memory system calls.

Exercise 24

Write a C Program that illustrates the following:

a) Creating message queue.

b) Writing to a message queue.

c) Reading from a message queue.

Week – 6

Exercise 25

Write a C program to copy a file into another using system calls.

Exercise 26

Write a C program that reads a file and writes in the reverse order.

Exercise 27

Write a C program to print all error messages.

Exercise 28

Write a C program to list only directories.

Exercise 29

Write a C program to check all 12 permission bits of a file.

Exercise 30

Write a C program to determine a file’s access rights using UID and GID.

Week – 7

Exercise 31

Write a C program to set a file’s time stamps to those of another file.

Exercise 32

Write a C program using fork, exec, and wait to run a UNIX command.

Exercise 33

Write a C program to accept user input as a command to be executed and then uses the strtok library

function for parsing command line.

Exercise 34

Write a C program to run two programs in a pipeline (Child runs cat, parent runs tr).

Exercise 35

Write a program that uses fork and exec to run a user-defined program and kills it if does not complete in 5

seconds.

