7. SUBJECT DETAILS

7.2. EMBEDDED SYSTEMS 7.2.1 **Objective and Relevance** 7.2.2 Scope 7.2.3 Prerequisites 7.2.4 Syllabus i. JNTU ii. GATE iii. IES 7.2.5 Suggested Books 7.2.6 Websites 7.2.7 Experts' Details 7.2.8 Journals 7.2.9 Findings and Developments 7.2.10.1 Session Plan 7.2.10.2 Tutorial Plan 7.2.11 Student Seminar Topics 7.2.12 Question Bank

7.2.1 OBJECTIVE AND RELEVANCE

The objective of this course is to help the students to learn the concepts of embedded systems. The course content discusses the characteristics, applications of embedded systems, microprocessor architecture, , basic principles and issues related to real time operating systems, upon which, much embedded software is based.

A basic understanding of the various processors architectures helps the students to write better code for embedded systems. Also, the details of various operating systems, programming languages, and development tools are presented in the syllabus.

The course covers the concepts of PSOC architecture, programming and its applications which is an advanced architecture for building embedded systems.

7.2.2 SCOPE

Embedded systems is a fast growing platform in the technological field as it is used in real-time applications. The syllabus covers the fundamentals necessary to take up embedded software development, with a sound understanding of the course contents, the students can dive into the details of embedded software programming by running the applications.

7.2.3 PREREQUISITES

Computer Organisation Operating Systems Microprocessor / Microcontroller Architecture

7.2.4.1 SYLLABUS: JNTU

UNIT-I OBJECTIVE

At the end of the unit student will be able to understand

- i. What is an embbeded software characteristics, implementation and application of embedded systems.
- ii. Architecture for embedded systems
- iii. Embedded Software development environments

SYLLABUS

Embedded Computing : Introduction, Complex Systems and Microprocessor, The Embedded System Design Process, Formalisms for System Design, Design Examples. (Chapter 1 from Text Book 1, Wolf).

UNIT- II

OBJECTIVE

At the end of the unit student will be able to understand 8051 & its architecture and hardware also.

SYLLABUS

8051 Architecture : Introduction, 8051 Micro controller Hardware, Timers and Counters, I/O Ports and Circuits, Serial data Communication, External Memory, Interrupts. (Chapter 3 from Text Book 2, Ayala and Gadre)

UNIT- III

OBJECTIVE

At the end of the unit student will learn the complete instruction set of 8051 and know how to write the basic assembly language programming.

SYLLABUS

8051 Programming : Assembly Language Programming Process, 8051 Instruction Set : Data Transfer, Arithmetic, Logical and Branch Instructions, Decimal Arithmetic, Interrupt Programming. (Chapters 4-8 from Text Book 2, Ayala and Gadre).

UNIT -IV

OBJECTIVE

After the completion of unit student will understand the PSoc Architecture and Programming.

SYLLABUS

PSoC Architecture and Programming: PSoC as a Single-Chip solution for Embedded System Arthmetic, analog, Digital and controller (8051) Blocks in PSoC, Hardware Programming through PSoC creator, I/O Pin Configurability (**Text Book 3, Robert Ashby**).

UNIT- V

OBJECTIVE

At the end of the unit student will understand the implementation of applications using PSoC.

SYLLABUS

Applications : Blinking an LED, Cap Sense, Digital Logic, Precision Analog and Serial Communications (Test Book 4, Robert Ashby)

UNIT- VI

OBJECTIVE

At the end of the unit student will be able to know various real time operating systems and there key features.

SYLLABUS

Introduction to Real – Time Operating Systems : Tasks and Task States, Tasks and Data, Semaphores, and Shared Data; Message Queues, Mailboxes and Pipes, Timer Functions, Events, Memory Management, Interrupt Routines in an RTOS Environment. (Chapter 6 and 7 from Text Book 3, Simon).

UNIT- VII

OBJECTIVE

At the end of the unit student will understand the basic design concepts of RTOS with development tools.

SYLLABUS

Basic Design Using a Real-Time Operating System: Principles, Semaphores and Queues, Hard Real-Time Scheduling Considerations, Saving Memory and Power, An example RTOS like uC-OS (Open Source); Embedded Software Development Tools: Host and Target machines, Linker/Locators for Embedded Software, Getting Embedded Software into the Target System; Debugging Techniques: Testing on Host Machine, Using Laboratory Tools, An Example System. (Chapter 8,9,10 & 11 from Text Book 3, Simon).

UNIT- VIII

OBJECTIVE

At the end of the unit student will know advanced ARM and SHARC embedded processors

SYLLABUS

Introduction to advanced architectures : ARM and SHARC, Processor and memory organization and Instruction level parallelism; Networked embedded systems: Bus protocols, I2C bus and CAN bus; Internet-Enabled Systems, Design Example-Elevator Controller. (Chapter 8 from Text Book 1, Wolf).

7.2.4.2 GATE SYLLABUS

Not Applicable

7.2.4.3 IES SYLLABUS

Not Applicable

7.2.5 SUGGESTED BOOKS

TEXT BOOKS :

- T1. Computers and Components, Principles of Embedded Computing System Design, Wayne Wolf, Elseveir. (2nd Edition)
- T2. The 8051 Microcontroller, Kenneth J.Ayala and Dhanunjay Gadre, Thomson
- T3. The PSoC Controller (paper Back Edition), Rober Ashby, Newens
- T4. My First Five PSoC Designs, Robert Ashby, E-Book

REFERENCES:

- R1. Embedding system building blocks, Labrosse, via CMP publishers.
- R2. Embedded Systems, Raj Kamal, TMH.
- R3. Micro Controllers, Ajay V Deshmukhi, TMH.
- R4. Embedded System Design, Frank Vahid, Tony Givargis, John Wiley.
- R5. Microcontrollers, Raj kamal, Pearson Education.
- R6. An Embedded Software Primer, David E. Simon, Pearson Education.
- R7. PSOC 3: CY8C38 Familty Data sheet, Cypress semicondutor corporation.

7.2.6 WEBSITES

- 1. www.embedded.com
- 2. www.hp.com
- 3. www.techonline.com
- 4. www.eembc.org
- 5. www.instantweb.com
- 6. www.cs.ucr.edu/esd

7.2.7 EXPERTS' DETAILS

INTERNATIONAL

- Mr. David .E.Simon University of Caliphorinia Email :mikh@awl.com
- Professor Steve Heath Univesity of MIT Email : cepubpublicity @awl.com

NATIONAL

- 1. Professor Amitabh Mukharjee IIT Kanpur
- Professor A.K.Mishra NIIT Allahabad, Email: akpcsald@niitalt.com

REGIONAL

- 1. Professor A.K.Pujari University of Hyderabad Email : akp@uoh.ernet.in
- Dr.Jawahar IIIT Hyderabad Email : drj@iiit.ac.in

7.2.8 JOURNALS

- 1. IEEE Transactions on Computer (available in college library).
- 3. STM Journal (available in college library).
- 4. CSI Communications (available in college library).
- 5. Inventi Impact Robotics (available in college library).

7.2.9 FINDINGS AND DEVELOPMENTS

- 1. Detection of unattended objects by video analysis, Prof. H.K. Kaura, Prerana Gupta, Vasundhara Mane, Sunny Chowdhari & Ashish Das, IJ-CA-ETS, Oct. 2013-Mar. 2014, Vol 6, Issue no.1, Page no. 54-57.
- 2. A Brief Review of machine learning techniques for forecasting, Darshana D.Chande & Prof. M.Vijayalakshmi, IJ-CA-ETS,Oct. 2013-Mar.2014, Vol.6, Issue no.1,Page no. 41-46.
- 3. Unseen to seen with cryptography, steganography and watermarking, Baisa L Gunjal & Dr. Suresh N Mali, CSI Communications, Feb. 2014, Vol. 37, Issue no.11, Page no. 22-24.
- 4. Evaluation of embedded cost and distribution factor methods used in deregulated electricity market, Niharika Yadav, Yog Raj Sood, Shashank Shekhar Singh, RRJoESA, STM Journal, Jan-April 2013, Page no. 10-18.
- 5. Speech emotion recognition using an enhanced kernel isomap for human-robot interaction, Shiqing Zhang, Xiaoming Zhao & Bicheng Lei,Inventi Impact Robotics, Oct.-Dec. 2013, Vol. 13, Issue no.4, Page no. 226-232.

7.2.10.1 SESSION PLAN

7.2.10.2 TUTORIAL PLAN

7.2.11 STUDENT SEMINAR TOPICS

- 1. Recent trends in Embedded System.
- 2. Humanoids Robotics
- 3. Embedded zero tree
- 4. Security in embedded systems
- 5. Embedded web technology
- 6. Remotely queried embedded microsensors
- 7. Bluetooth based smart sensor networks
- 8. Moletronics- an invisible technology

7.2.10.1 SESSION PLAN

S no.	Topics in JNTU syllabus	Modules and Submodules	Lecture no.	Suggested books	Remarks
UNIT – I (Embedded Computing)					

1	Introduction	What is an embedded system		T1-Ch-1		
		Components of embedded	L1			
		system				
2	Complex systems	Embedding computers				
	and					
	microprocessors	Characteristics of embedded		T1-Ch-1		
			L2,L3	R2-Ch-1		
		Why use microprocessor		R4-Ch-1		
		Challenges in embedded		N4-CII-1		
		computing system design				
3	The embedded	Levels of abstraction				
	system design	Requirements in design				
	process	Requirements in design		T1 Ch 1		
		Specification		11-01-1		
		Architecture design	L4,L5			
		Designing hardware and				
		software components				
		System integration				
4	Formalisms for	Structural description		T1-Ch-1		
	system design	Debautaral description	L6,L7			
		Benavioral description				
5	Design examples	Model train controller		T1-Ch-1		
		Requirements				
		Conceptual specifications	L8,L9			
		Detailed specifications				
UNIT – II (8051 Architecture)						
6	Introduction	Introduction to				
		microcontrollers		T2-Ch-3		
		What is a microcontroller	L10	R3-Ch-1		
		What are the components in a		R5-Ch-1 2		
		microcontroller				
7	8051	Architecture of 8051	11 12	T2-Ch-3		
	microcontroller		LII,LIC			

	hardware	All internal registers		R3-Ch-2			
		Memory organization		R5-Ch-3			
		Pin diagram					
		Special function registers					
8	Timers and	Counter and timer registers		T2-Ch-3			
	counters	Modes of timer operation	L13	R3-Ch-6			
				R5-Ch-3			
9	I/O ports and	Input and output ports circuits		T2-Ch-3			
	circuits		L14	R3-Ch-3			
				R5-Ch-3			
10	Serial data	Function of serial port		T2-Ch-3			
	communication	registers	L15	R3-Ch-6			
		Modes of serial operation		R5-Ch-3			
11	External memory	External memory connectivity	116	T2-Ch-3			
			LIU	R5-Ch-3			
12	Interrupts	Types of interrupts		T2-Ch-3			
			L17	R3-Ch-6			
				R5-Ch-3			
S.	Topics in JNTU	Modules and Submodules	Lecture	Suggested	Remarks		
10.	Synabas			00003			
UNII – III (8051 Programming)							
13	Assembly language programming	Understanding the assembly language syntax					
	process	Understanding the assembler		T2-Ch-4,5 & 6			
		program	L18	R3-Ch-4,5			
		Understanding the problem to be solved and design the		R5-Ch-4,9			
		program					

		Flow charts			
		Writing and testing the program			
14	8051 Instruction set	Lines of code		T2-Ch-4,5&6	
		8051 instruction syntax	L19	R3-Ch-4,5	
		Addressing modes		R5-Ch-4	
15	Data transfer	Data transfer instructions		T2-Ch-4,5 & 6	
		(internal and external data moves)	L20	R3-Ch-4	
				R5-Ch-4	
16	Arithmetic	Instructions affecting Flags			
		Incrementing and decrementing instructions			
		Unsigned and signed addition		T2-Ch-7,8	
			L21	R3-Ch-4	
		subtraction		R5-Ch-4	
		Multiplication			
		Division			
17	Logical and Branch instructions	Bit and byte level logical operations			
		Rotate and swap instructions		T2-Ch-5,6,7,8	
		The jump and call program range	L22	R3-Ch-4	
		Jumps – bit , byte		R5-Ch-4	
		unconditional jumps,			
		Calls and subroutines			
18	Decimal arithmetic	Operation performing decimal		T2-Ch-7,8	
			L23	R3-Ch-4	
				R5-Ch-4	
19	Interrupts	Interrupts and returns	L24	T2-Ch-7,8	

	programming More		detail on interrupts.			R5-Ch-4,5	
	IE s		pecial function register				
	IP s		IP special function register				
		Inte	errupts and interrupt				
		han	dler subroutines				
S	Topics in JNTU	Мо	dules and Submodules	Lectu	ıre	Suggested	Remarks
no.	syllabus			no	•	books	
	UNIT	– IV	(PSoC Architecture and P	rogra	mmin	g)	
20	20 PSoC as a Single-		PSoC as a Single-Chip				
	Chip solution for		solution for Embedded		L25	R7-Ch1	
	Arithmetic	n	System Arithmetic				
21	Analog Digital an	d	Analog Digital and				
~ 1	controller (8051)		controller (8051) Blocks	L	26-29	R7-Ch7,8	
	Blocks in PSoC		in PSoC				
22	Hardware		Hardware programming				
	Programming		through PSoC creator	L30-31		R7-Ch9	
	creator						
23	1/0 Pin		I/O Pin Configurability				
	Configurability				L32	R7-Ch6	
UNIT – V (Applications)							
24	Blinking an LED		Blinking an LED		L33	R7-Ch10	
25	Can Sanca		Can Sanca		124	D7 Ch10	
25	Cap Sense				L34	K7-CH10	
26	Digital Logic		Digital Logic		L35	R7-Ch10	
27	Precision Analog and		Precision Analog and Serial		L36	R7-Ch10	
	Serial Communications		Communications				
	UNIT	– VI	(Introduction to real time ope	erating	systen	ns)	
28	Tasks and task state	es	Tasks		1.27	R2, Ch-9	
			Task states		L3/	R6,Ch-6,7	
29	Tasks and data		Tasks		L38	R6,Ch-6.7	

		Data				
30	Semaphores and shared data	RTOS semaphores Initializing semaphores Reentrancy and semaphores Semaphore as a signaling device Multiple semaphores Semaphores problems and variants Ways to protect shared data	L39	R2, Ch-8 R6,Ch-6,7		
31	Message queues, mail boxes and pipes	Message queues Mail boxes Pipes	L40	R2, Ch-8 R6,Ch-6,7		
32	Timer function, events	Timer functions Events	L41	R4, Ch-4 R6,Ch-6,7		
33	Memory management	Introduction Memory management	L42	R4, Ch-5 R6,Ch-6,7		
34	Interrupt routines in an RTOS environment	Introduction Interrupt routines in an RTOS environment	L43	R4, Ch-5 R6,Ch-6,7		
UNIT – VII (Basic design using a real – time operating system)						
35	Principles , Semaphores and Queues	Principles Semaphores Queues	L44,L45	R2, Ch-8 R6, Ch-8		
36	Hard real – time scheduling considerations	Hard real – time scheduling considerations	L46	R2, Ch-8 R6, Ch-8		
S no.	Topics in JNTU syllabus	Modules and Submodules	Lecture no.	Suggested books	Remarks	

37	Saving memory and power	Saving memory and power	L47	R6, C	h-9		
38	An example RTOS like An example RTOS like u uC-OS (Open Source) (Open Source)		L48	R6, C	h-9		
39	Embedded software development tools: host and target machines	Embedded software development tools: host and target machines	L49	R6, C	:h-9		
40	Linkers/locators for Embedded software	Linkers/locators for Embedded software		-50 R6, Ch-9			
41	Getting embedded software into the target system	Getting embedded software into the target system	L51	R6, C	R6, Ch-9		
42	Debugging techniques: testing on host machine, using laboratory tools	Testing on host machine Using laboratory tools	L52	R6, C	h-10		
43	An example system	An example system	L53	R6, C	ο̃, Ch-11		
	UNIT	– VIII (Introduction to advance	ed archi	itectures)		1	
44	ARM and SHARC	ARM		L54	T1, C	h-8	
		SHARC			R5, C	h-15	
45	Processor and memory organization and	Processor Memory organization		L55	T1, C R5, C	h-8 h-15	
46	Instruction level parallelism	n Instruction level parallelisn	n	L56	T1, C R5, C	h-8 h-15	
47	Network embedded systems: Bus protocols	Network embedded systen Bus protocols	ns:	: L57 T1, Ch-8 R5, Ch-7		h-8 h-7	
48	I ² C bus and CAN bus	I ² C bus and CAN bus		L58	T1, C R5, C	h-8 h-7	
49	Internet-enabled systems	Internet-enabled systems		L59	T1, C	h-8	

50	Design example – elevator	Design example – elevator	L60	T1, Ch-8	
	controller	controller			

7.2.10.2 TUTORIAL PLAN

S.No	Unit	Торіс	Salient topics to be discussed
1	I	Design examples	Model train controller
			Requirements
			Conceptual specifications
			Detailed specifications
2	II	Counter and timers	Programs involving timer and counter in different modes of operation
3	II	Serial data input/ output	Programs to operate microcontroller in different serial modes of operation
4		Data transfer instructions	Programs involving various data transfer instructions
5		Logical instructions	Programs involving bit / byte level logical operations and rotate/ swap instructions
6		Arithmetic operations	Programs involving addition, subtraction, multiplication and division instructions
7	- 111	Jump and Call Instructions	Programs involving jump and call instructions
8		Further details on Interrupts	Programs using timer/ counter and serial interrupts
9	IV	PSoC architecture and programming	PSoC architecture and programming
10	V	PSoC Applications	Programs for applications using PSoC.
11	VI	Timer function, events	Discussion of timer functions and events
12	VII	Debugging techniques: testing on host machine	Testing on host machine
			Using laboratory tools

		using laboratory tools	
13	VIII	Design example – elevator controller	Design example – elevator controller

7.2.12 QUESTION BANK

iii. Compositioniv. Generalization.

UNIT - I 1. Explain in detail the embedded system design process. (Nov 13) 2. Write about formalisms for embedded system design in detail. (Nov 13) 3. i. What a suitable example explain the various stages involved in th design of embedded system. (Dec 12) 4. i. Define the terms "System and an "Embedded System" ii. Explain the components of an embedded system hardware. iii. Give the classification of Embedded systems (Nov 11) 5 i. Explain how a media processor differ from a DSP processor. ii. What are the techniques of power and energy management in an embedded system? (Nov 11) 6. i. How UML is used in Embedded System Design process? Briefly explain. ii. Describe the following: a. An object in UML notation b. A class in UML Notation (Nov 11, 10) 7. i. List out the 7 layers of OSI model and explain. ii. Explain i. Crossbar Network ii. Multistage Network. (Nov 11) Discuss different network configurations suitable for serial data communications in 8. respect of reliability, speed, fault finding, cost, etc. 9. i. List the advanced microprocessors and microcontrollers used in the embedded systems. ii. What are the functional circuits in a chip or core of microcomputer in an embedded system? Explain them in brief. (Nov 11, 10) 10. i. Describe digital computer system organization and operation. ii. Explain the function of the CPU and memory. (Nov 10) 11. Explain the following types of relationships exist between objects and classes. i. Association ii. Aggregation

(Nov 10)

- i. Machine language
- ii. Assembly language
- iii. High level language.
- Explain which bits in which registers must be set to give the serial data interrupt to the 13. i. highest priority. ii. When used in multiprocessing, explain which bit in which register is used by a transmitting 8051 to signal receiving 8051s that an interrupt should be generated. (Nov 10) Compare the features in an exemplary family chip or core of each of the following. 14.
 - i. Microprocessor
 - ii. Microcontroller
 - iii. RISC processor
 - iv. Digital Signal Processor.
- 16. i. What are the levels of abstraction in a embedded system design process. ii. What are the major components of an embedded system hardware. (Nov 09)
- 17. i. Define an embedded system? List out the software tools needed on designing an embedded system. Discuss about any one of them.
 - ii. Compare top down and bottom up design (Nov 09)
- 18. i. What are the basic functional circuit chips in an embedded system? Explain them in brief. ii. What are the techniques of energy and power management in an embedded system?

(Nov 09)

- 19. i. Classify embedded systems. ii. What are the advantages and disadvantages in having fixed point arithmetic unit and additional floating point arithmetic processing unit. (Nov 09)
- What is an embedded computer system? Give an example. 20. i. (Nov 08) ii. Explain the characteristics of embedded computing applications.
- Explain the challenges in embedded computing system design. (Nov 08) 21. i. Briefly describe the distinction between specification and architecture. ii.
- What are the reasons for using microprocessor in digital systems? 22. i. (Nov 08) "External constraints are one important source of difficulty in embedded system design". Explain. ii.
- 23. Explain in detail the embedded system design process.
- What are embedded systems? Define hard-real time and soft-real time embedded systems. 24. Give any two examples for each of these two categories and justify why they are hard/ soft real time embedded systems. (Feb07)
- 25. What are the important general requirements of embedded systems? Explain each one of the requirements and discuss in which application that requirement is more important. (Feb 07)
- Explain the role of operating systems and the programming languages for the development 26. of embedded systems. (Nov 06)
- Write short note on the following parts of embedded systems. 27. Processors i.

(Nov 10)

(Nov 10)

(Nov 13, 08)

m. momory	ii.	Memory
-----------	-----	--------

iii. Operating System

iv. Programming Languages

- 28. Discuss various steps involved in the development of an embedded system with an example. (Nov 06)
- 29. i. What is an embedded system? Why is it so hard to define? ii. List the applications of embedded systems. (Jun 06)
- 30. Explain the characteristics of an Embedded Systems.
- 31. Explain the basic principles of real time operating systems. Explain how real time systems are related to embedded systems.
- 32. Explain about the embedded software development environment and give a overview of embedded software.
- 33. List and explain the characteristics of embedded system that distinguish such systems from other computing system.
- 34. List the advantages of embedded systems and explain them
- 35. Briefly describe the distinction between requirements and specification.

UNIT II

	1.	Discuss about the interrupts and serial I/O ports of 8051.	(Nov 13)
	2.	Explain the mode – 2 operations in serial data communication of 8051 with an assembly langu	age program. (Nov 13)
3.	i. ii.	Explain the I/O port configuration of 8051. Write briefly about modes of timers and counters in 8051.	(Dec 12)
4.	i. ii.	What are the 16-bit data addressing registers of the 8051 microcontroller and explain their fur Tabulate the special function registers by making four columns as register, bit, primary fur addressable.	actions. action and bit (Nov 11)
5.	i. ii.	Write short notes on the following with reference to 8051 microcontroller hardware: 8051 oscillator and clock. Program counter and Data pointer.	(Nov 11)
6.	i.	Explain the following, with respect to the 8051 microcontroller registers Organization. a. PC and DPTR b. PSW.	
	ii.	Sketch and explain internal RAM organization of the 8051 microcontroller	(Nov 11)
7.	i.	Explain about TCON and TMOD function registers relevant to counters and timers	of the 8051

- sters relevant to counters and timers of the 805 IUL egi microcontroller.
 - ii. Draw and explain the timer/counter logic in which the resultant timer clock is gated to the timer circuit.

(Nov 06)

8.	i. ii. iii.	Why a low-address byte latch for external memory is needed. How an I/O pin can be both an input and output. Evaluate the execution time of a single cycle instruction for a 6MHz crystal.	(Nov 10)
9.		Draw the block diagram of the 8051 microcontroller and describe in detail about its CPU con	ponents.
10.		Write short notes on bit-addressable control registers.	(Nov 10) (Nov 10)
11	•	With the help of a neat block diagram explain the architecture of 8051	(Nov 09)
12		Explain different modes of serial communication interface in 8051, explain modes with an example each.	each of the (Nov 09)
13	. i.	Draw the program model of 8051, Explain the function of special function 8051	registers of
	ii.	Explain the interrupt handling capacity of 8051	(Nov 09)
14	. i. ii.	Explain the Timer Counter unit operations of 8051. List the internal memory contents and their functions.	(Nov 09)
15.		Draw the figure showing the connections between an 8051 and an external memory consisting of 16k of EPROM and 8k of static RAM. Explain the timing associated wi memory access cycle.	configuration th an external (Nov 08)
16.	i. ii. iii. iv.	Give the formats of the following function registers of 8051. SCON PCON TCON TMOD	(Nov 08)
17.		Discuss in detail about the serial data communication circuit in 8051.	(Nov 08)
18.	i. ii.	Explain various Timer modes of operation of 8051. What is the function of IP function register? Specify the purpose of each bit in the register.	(Nov 08)
19.	i. ii.	Explain the general structure of 8051 syntax. Discuss atleast four different methods to copy the byte in TCON to register R2.	(Nov 08)
20	•	Write about the evolution of microcontrollers. What are the other names a them.	attributed to
21	•	What is the architectural difference between microprocessor and microcontrolle	ers.
22.		Discuss about interrupt structure of 8051 microcontroller specify the priority of interrupts.	
23.		Explain the various serial data transmission and reception modes for 8051 microcontrollers.	
24.		Write about program memory and data memory of 8051 microcontroller.	
25.		Explain the following i. SP ii. SBUF iii. TO	
26.		Write about synchronous and asynchronous modes of transmission and receptions.	
27.		Explain about 8051 oscillator and clock circuits.	

- 28. Explain about the stack organization in 8051 microcontroller.
- 29. How many special function registers are present in 8051 microcontroller. Discuss atleast five of them.
- 30. Draw the pin diagram of 8051 microcontroller and explain.
- 31. Write about input/output pins, ports and circuits of 8051 microcontroller.
- 32. Draw the schematic diagram showing the external memory connections to 8051 microcontroller.
- 33. Explain in detail about the following
 - i. IE ii. IP
- 34. Explain in detail about the following
 - i. ACC ii. DPTR iii.B iv. SP v. PC vi.P0 vii.PSW

UNIT III

1.	Exp	plain about data transfer and logical instructions with examples.	(Nov 13)
2.i.		What are the multiplication instructions available in 8051 Assembly language and explain wirexample.	th an
ii		What are the Division instructions available in 8051 assembly language and explain with an exp	xample. (Nov 13)
3.i. ii		Write a program to check the status of ON/OFF condition of 8 machines using 8051. Explain any two programming tools used for Assembly Language Programming.	(Nov 13)
4.i.		Write a assembly language program to display how many positive, negative and zeros are pre array of 20 numbers.	sent in a
ii		Write a assembly language program to generate a square wave of frequency 2KHz when an in recognized by the controller.	nterrupt is (Nov 13)
5.	i.	Write a program to check whether the data 50 is present in the memory location from 60h t present then load its location in R4 store a value '0' in it.	o 70h. If it is
	ii.	Write a program to move a block of 20 data from 4200 to 421F.	(Dec 12)
6.	i. ii. iii.	Briefly explain the following Addressing modes with reference to the 8051 Microcontroller: Immediate Addressing mode Register Addressing mode Direct Addressing mode	
	iv.	Indirect Addressing mode.	(Nov 11)

- 7. i. Explain with suitable example, how to perform bit jumps using relevant mnemonics.
 - ii. Write an assembly language program for the data given below: The number A6h is placed somewhere in external RAM between locations 0100h and 0200h. Find the address of that location and put that address in R6(LSB) and R7(MSB). Place comments on each line of code. (Nov 11)
- 8. i. Explain with suitable example, how to perform decimal arithmetic operation using relevant mnemonics.
 ii. Write an assembly language program to get hex data in the range of 00-FFh from the port 0 and convert it to decimal. Save the digits in R7, R6 and R5, where the LSB is in R7. Place comments on each line of code. (Nov 11)
- 9. i. What determines the address of the first instruction in memory?
 ii. Write an assembly language program for moving the data in addresses 0010H to 001AH to addresses 0020H to 002AH. (Nov 11)
- 10. Write the hardware and software for transmitting one character -`A' to a serial output device using 8051based system under interrupt driven i / o mechanism. (Nov 11)
- 11. i. Explain how to understand the assembly language syntax.ii. What are the flow chart elements and action box elements? Discuss about them. (Nov 11)
- 12. i. Explain with suitable example, how to perform unsigned multiplication using relevant mnemonics.
 ii. Write an assembly language program to multiply the unsigned number in register R3 by the unsigned number on port 2 and put the result in external RAM locations 10h(MSB) and 11h(LSB). Place comments on each line of Code. (Nov 11, 10)
- 13. Write an assembly language program to increment the contents of RAM locations 13h, 14h and 15h using an indirect addressing. Place comments on each line of code. (Nov 10)
- 14. Write an assembly language program to find a number that when XORed to the A register results in the number 3Fh in A. Also write comment on this. (Nov 10)
- 15. Write an assembly language program to copy a block of 8 bytes of data to RAM locations starting at 50H from RAM locations 30H. Also write comment on this. (Nov 10)
- 16. Explain with suitable example, how to perform increment and decrement the contents of registers and RAM using relevant mnemonics. (Nov 10)
- 17. Explain the commands that place data in registers, internal memory and external memory. (Nov 10)
- 18. Explain the following Instructions:
 - i. INC destination.
 - ii. DEC destination.
 - iii. ADD destination, source.
 - iv. ADDC destination, source.
 - v. SUBB destination, source.
 - vi. MUL AB.
 - vii. DIV AB.
 - viii. DA A.

(Nov 10)

- 19. Explain the necessary details on interrupts while writing interrupt-driven programs. (Nov 10)
- 20. i. Write an assembly language program to 8051 to generate an interrupt after a time delay of 4ms the crystal frequency is 12MHZ.
 - ii. Explain how signed arithmetic's is carried out in 8051. (Nov 09)

21.	i. ii	Write a brief note in SJMP, LJMP and AJMP instructions in 8051. Give an example for each instruction use. How is DPTR register used is 8051? Explain	
	iii,.	Briefly explain the port 3 functions in 8051.	(Nov 09)
22.	i. ii.	Explain different branch instructions in 8051 with an example each Write an assembly language program to 8051 to keep incrementing R1 and R decrementing I register Bank 3 of 8051 till they become equal.	R2 register of (Nov 09)
23.	i.	Write an assembly language program to search for consecutive zeros in internal RAM loca	ations 60H to
	ii.	Explain with suitable examples the conditional and unconditional Jump instructions in 8051	(Nov 09
24.	i. ii.	Explain the shift and rotate instructions of 8051 with examples. Write an assembly language program to 8051 to rotate R1R0 registers to left by two posi R1R0 together as a 16-bit register	tions treating (Nov 09)
25.	i. ii.	Write an assembly language program to add two 16 bit numbers stored in R1R0 Write a brief note on shift and rotate operations of 8051.	(Nov 09)
26.	i. ii.	Explain different addressing modes of 8051 microcontroller with an example. Explain data transfer instructions of 8051.	(Nov 09)
27.	i. ii.	Explain different ALU instructions in 8051 with an example. Write a brief note on addressing modes of 8051.	(Nov 09)
28.	i. ii.	Why the programmer must know about the CPU in order to program in assembly language Explain about various data addressing modes.	(Nov 08)
29.	i. ii.	Identify four reasons to program a CPU in assembly language. Describe how data may be pushed and popped using a stack.	(Nov 08)
30.	i. ii.	List four types of utility programs. What are the four addressing modes used to access data? Explain.	(Nov 08)
31.	i. ii.	Write a program to increment the contents of RAM locations 13h,14h and 15h using indirect a only. What are the sequence of events involved in CALL instruction.	addressing (Nov 08)
32.	i. ii.	Explain in detail about different types of jump instructions with suitable examples. Discuss about decimal arithmetic with example.	(Nov 08)
33.		Write a program to count the number of 1s in any number in register B and put the count in R5	5.(Nov 08)
34.	i.	Write a program to multiply the data in RAM location 22h by the data in RAM location 15h; in RAM locations 19h (low byte) and 1Ah (high byte).	put the result
	ii.	Discuss how the CPU uses the stack to store call opcode return addresses.	(Nov 08)
35.		Explain about the assembly language programming process What is the need for using assembly	oly language.
36.		Write a program to exchange the contents of the SP and the PSW.	
37.		Write a program to swap the bytes in timer 0: put TL0 in TH0 and TH0 in TL0.	
38.		Write a program to exchange both low nibbles of registers R0 and R1: put the low nibble of R0 the low nibble of R1 in R0.	0 in R1, and

- 39. Write about the mechanics of programming.
- 40. Write about the basic computer concepts.
- 41. Explain in detail about the programming tools and techniques.
- 42. Specify and explain the methods for testing the program.
- 43. Explain in detail about the various addressing modes of 8051 microcontroller.
- 44. What is the subroutine. Why it is needed.
- 45. Write about the basic concepts of interrupts.
- 46. Assuming the crystal frequency is 10 megahertz, write a program that will use timer 1 to interrupt the program after a deley of 2ms.
- 47. Write an assembly language program to find factorial of a number?
- 48. Write an assembly language program to find the largest of n numbers?
- 49. Write a program to generate the fibonacci series?
- 50. Write a program to evaluate the expression $(x^2+2x+3)/2$?
- 51. Write a program to evaluate the expression $x+x^2+x^3$?
- 52. Write a program to count the number of positive numbers from n numbers.
- 53. Write about the jump and call program range of 8051 microcontroller. And discuss the bit jump / byte jump instructions of 8051 microcontroller.

UNIT IV

- 1. Describe the function of various blocks of PSoC (Dec 12)
- 2. What is PSOC? Explain advantages of PSOC over other technologies?
- 3. Compare and contrast the features of PSOC1, PSOC3 and PSOC5.
- 4. List and explain the characteristics common to PSOCs.
- 5. Draw and explain the architecture of PSOC3?.
- 6. Explain the CPU subsystem of PSOC3?
- 7. List the various features provided by the PSOC3.
- 8. Explain the features of DMA and PHUB in the CPU subsystem?
- 9. Discuss the Static RAM and EEPROM of memory subsystem.

- 10. Draw the memory map and explain about external memory interface.
- 11. Explain the following two blocks in the PSOC architecture.i. Clocking systemii. Power System
- 12. Explain the Programmable SC/ CT Blocks in PSOC3?
- 13. What are UDBs? Explain the features and their configuration?
- 14. What is Delta-Sigma ADC? Explain the features available and their configuration?
- 15. Explain any two of the following
 - i. CAN
 - ii. USB
 - iii. IIC
- 16. Explain the LCD direct drive and comparators used in PSOC3?
- 17. Explain in detail the analog subsystem blocks?
- 18. Explain in detail the digital subsystem blocks?
- 19. Explain the PIN configuration of PSOC3?
- 20. Explain any two of the following
 - i. JTAG
 - ii. SWV
 - iii. SWD
- 21. Explain any two of the following
 - i. PWMs
 - ii. DFB
 - iii. Debug and Trace features.
- 22. Explain how the I/O system and routing concept in PSOC3?
- 23. Explain the mechanism of reset in PSOC3? .
- 24. Explain the cpu system in PSOC3?
- 25. Explain the addressing modes and specify the types of instructions used in PSOC3?

UNIT V

- i. Explain how serial communication from one I/O to another I/O device is carried out using PSoC?
 ii. Explain any one applicaton of PSoC? (Dec 12)
- 2. Explain the steps involved in adding the components to blink an LED using PSOC creator?
- 3. Explain the steps involved in adding and configuring a capsense component using PSOC creator?
- 4. Explain the steps involved in adding and configuring a control register in digital logic using PSOC creator?
- 5. Explain the steps involved in adding and configuring components for UART using PSOC creator?

- 6. Explain the steps involved in adding and configuring in precision analog using PSOC creator?
- 7. Explain how to connect components and chip resources to blink an LED using PSOC creator?
- 8. Explain how to assign the pins to blink an LED using PSOC creator?
- 9. Write a program to blink an LED.
- 10. Explain how to assign pins and configure clocks for UART using PSOC creator?
- 11. Write a program to transmit and receive data serially through UART.
- 12. Explain how to assign the pins in capsense application?
- 13. Explain how to assign the pins in precision analog using PSOC creator?
- 14. Explain the steps involved in connecting and adding lookup table, more registers and hardware delay in digital logic using PSOC creator?
- 15. Explain the steps involved in building and debugging the project?
- 16. Explain the working procedure for an application in PSOC creator?
- 17. Explain the features of PSOC creator?
- 18. Distinguish between the PSOC designer and PSOC creator.
- 19. Explain the features of UART in PSOC3?
- 20. Explain the concept of capsense in PSOC3?
- 21. Explain the features of analog subsystem?
- 22. Explain the features of digital subsystem?
- 23. Explain the limitations of PSOC designer?
- 24. Explain the steps involved in adding and configuring the timers and counters?
- 25. Explain the steps involved in configuring the IIC bus?

UNIT VI

1.i. ii.	Discuss how shared data problem is taken care of in RTOS. Write a note on memory management	(Nov13)
2.i. ii.	Describe different types of data in an RTOS-based Real-Time System with their chara What do you understand by shared data problem? Explain with an example.	cteristics. (Nov13)
3.	Describe how semaphores, queues and message boxes are usd for synchronization in F	RTOS environment.

(Dec 12)

4. i. What are Reentrant functions? Explain how to decide a given piece of function code is reentrant.

- ii. Verify whether the following function is reentrant with justification? If not, modify the code to make it reentrant using semaphores or any other mechanism Static int iValue; {int iFixValue(int iParm) f int iTemp; iTemp = ivalue; iTemp +=iParm * 17; If (iTemp 4922) iTemp = iParm; iValue = iTemp; iParm = itemp+179; if (iParm < 2000) return 1; else return 0; }
 (Nov 11)
- 5. Outline three different plans by which RTOS finds out that an interrupt routine is executing. Compare these three plans. (Nov 10)
- 6. Design Underground Tank Monitoring Systems(UTMS) for four tanks to read temperatures and float levels, printing when required, and alarming under extreme conditions. Use a keyboard interface, display interface, printer interface, etc. and suitable processor. Assume suitable data wherever necessary.(Nov 10)
- Explain how a seperate task helps to control shared hardware like hash memory in the design of embedded 7. software with a suitable C-pseudocode using POSIX standard for RTOS interface such as mq-open, mqsend, mq-receive, and nanosleep. (Nov 10) 8. Compare and contrast three methods of protecting shared data with suitable examples. (Nov 10) 9. i. Explain different kernel objects in an RTOS. Explain the inter task communications through message queues, pipes, mailboxes (Nov 09) ii. 10. Compare semaphores, events and queues for implanting inter task communication with an example. (Nov 09) 11. i. Compare, binary semaphores, Mutex and counter semaphore Describe the function relevant to *u* cos operating systems. (Nov 09) ii. 12. Explain how scheduling takes place in preemptive scheduling algorithm. Compare it with non-Preemptive scheduling (Nov 09) What is the need to encapsulate the message queue, explain with an example on flash 13. memory read & write operation. (Nov 09) Explain in detail the basic functions in developing a RTOS. Explain for one RTOS used in 14. embedded system design. (Nov09) 15. i. What is a semaphore? What are the various operations on semaphores? How does semaphore make a function reentrant? (Nov 08) ii. Explain about memory management in RTOS. 16. i. What is a recentrant function? Is the following function reentrant? Jusity your answer. (Nov 08) int CErrors: void vcount Errors (int CNewErrors)
 - { CErrors+=CNewErrors;
 - ii. Compare and contrast various methods for intertask communication.

17. i. ii.	Explain the following intertask communication technique:a. Message queuesb. Mail boxesExplain with an example how semaphores solve the shared-data problem.	(Nov 08)
18 ;	Cive a note on Timer functions	(Nov 08 Apr 05)
10. I. ii.	Explain different ways of protecting shared data.	(1100 08, Apr 03)
19.	Why do we need timer functions in RTOS? Briefly discuss how they are	e provided. (Feb 07, Nov 05)
20.	What are the rules to be followed by the interrupt routines in RTOS? W	'hy? (Feb 07, Nov 05)
21.	What are events? Explain the role of events in RTOS.	(Feb 07, Apr 06)
22.	Explain the need of special architecture for pipelining and parallelism.	(Jun 06)
23.	How memory management is done by an RTOS? Why is memory managemedded systems?	agement not used in (Nov 06)
24. i. ii. iii.	Explain the following in embedded systems view: Program and Data memoryspace. Registers. I/O.	
iv.	Interupts.	(Jun 06)
25.	What is shared-data problem in an embedded system? Explain with an example.	(Nov 06, Apr 06)
26.	Discuss the relative merits and demerits of various shared - data protect	ction mechanisms? (Nov 05)
27.	Explain the functional blocks and the specification of the software of a	GPS system?. (Nov 06)
28.	Explain the methods used to save memory space required for data an system?	d code in embedded (Apr 06)
29.	Explain the characteristics of 'reentrant' function? Where and why do functions?	we need 'reentrant' (Apr 06)
30.	Explain the terms "Atomic" and "Critical Section" in the context of a systems. Explain with an example one solution to solve the shared - da	code for embedded ta problem.(Apr 06)
31.	What are the advantages and disadvantages of using a large number of tasks in an E	mbedded System.
32. i. ii. iii.	Write short notes on Message Queues Mailboxes Pipes.	
33. i. ii.	Write short notes on Events Timers	

iii. Heart beat timer.

- 34. What are the important criteria of selecting a software architecture?
- 35. How a reentrancy and Semaphores work together in real time environments and explain multiple Semaphores.
- 36. Each Semaphores are signaling device and how semaphores problems can be taken to accounts of the task of micro processes.
- 37. It is not good idea to create and destroy tasks as the system is running. All tasks must be created at the beginning. Explain?
- 38. What is timer function. Explain delaying task with the RTOS delay function.
- 39. Explain why to write short interrupt routines?
- 40. What are the constraints for interrupt routines in a RTOS environment.
- 41. What are the main features of a RTOS?
- 42. The building block of software written under an RTOS is the TASK. Explain?
- 43. Write short notes on
 - i. Scheduler
 - ii. Task states
 - iii. Shared data problem
- 44. Point out the differences between a RTOS and an ordinary operating system.
- 45. Discuss the various methods of protecting shared data.
- 46. Draw a diagram showing the transitions among the three task states in a RTOS environment.
- 47. Write short notes on
 - i. Semaphores
 - ii. RTOS semaphores.
- 48. Explain the Real Time Operating System Architecture and its advantages.

UNIT-VII

1. Discuss the development of μ C-OS.

2. Write notes on

- i. Semaphores and queues in RTOS
- ii. Hard Real-Time Scheduling Considerations
- 3. Explain the role played by PROM programmer, Incircuit emulator and ROM Emulator in the embedded system development cycle. (Dec 12)

(Nov 13)

(Nov 13)

- 4. Outline the use of script files and output files in debugging process of embedded software by giving sample script file and sample output file. Assume suitable data. (Nov 11)
- 5. i. Explain how to perform testing programs using a personal computer.
 - ii. Explain how to perform testing programs on a single-board computer.
 - iii. What is importance of testing programs? (Nov 11)
- 6. Enumerate various timer function call services associated with C /OS RTOS with their function prototypes and applications. (Nov 11)
- Write the C-pseudocode for Nuclear Reactor's problem of detecting equality of two temperatures using C /OS RTOS's function prototypes by passing pointers on queues. (Nov 11)
- 8. i. Describe relevant function prototypes of C /OS for initializing and using semaphores.
 ii. Explain using C /OS and C-pseudo code, how semaphores protect data in the Nuclear Reactor's problem of detecting equality of two temperatures (Nov 10)
- 9. Assume that a message is to be printed line by line after formatting it. Develop C-pseudo code using C /OS RTOS's function prototypes by using a semaphore as a signaling device. Assume one printer task function and one printer interrupt function. (Nov 10)

10. i. ii. 11.	Discuss the hard real-time scheduling considerations in hard real-time systems List and explain different approaches for saving power for embedded softw using RTOS. (List and explain COS library functions used in task monitoring system.	vare design Nov 10) (Nov 09)
12. ii.	i.Using VRTX RTOS develop C – Pseudocode for handling interrupts for embedded systems. Explain how resource sharing is carried out in a typical embedded systems desig	a typical n.(Nov 09)
13. i. ii.	Give a note on Linker/Locators for Embedded software. Give a brief note on ROM emulators.	(Nov 08)
14.	Explain with an example the basic design of an embedded system using a Real time operating	system. (Nov 08)
15. i. ii. iii.	Write notes on: Encapsulating semaphores Hard Real-time scheduling considerations Saving memory space.	(Nov 08)
16.	Explain in detail about embedded software development tools.	(Nov 08)
17.	Discuss the important features of various software architectures adopted for embedded systems	(Feb 07)
18.	Explain the differences between an 'Host Computer System' and a 'Target System' in terms of hardware and software.	`their (Feb 07)

19.		Why in general an Host machine is used for the developments of an embedded syst various software development tools provided by a Host system?	em software. Explain (Feb 07, Nov 05)
20.		Compare the characteristics of various software architectures for embed Explain how do you choose a particular architecture for your application	dded applications. ?(Feb 07,Nov 05)
21.		What are hybrid architectures? What are their advantages.	(Feb 07)
22.	i. ii. iii. iv.	Write short notes on the following Hard real-time systems Soft real -time systems Time-slicing Encapsulation	(Feb 07)
23.		Explain the functions of a scheduler in a RTOS and how does the schedu functions. (F	ller carryout those eb 07, Nov 05)
24.		Discuss about serial communication programming.	(Apr 06)
25.		What are the main goals of software development for embedded systems host system meets these goals? (A	? Explain how an pr 06, Nov 05)
26.	i. ii. iii. iv.	Explain the following software development tools A Cross-Compiler A Cross-Assembler A Linker A Loader/ Locator	(Nov 06)
27.		Explain the need for encapsulating semaphore and quenes with an examp	le. (Nov 05)
28.		Discuss various methods adopted to reduce power consumption in embed	ded applications. (Nov05)
29.		Explain the hard real - time scheduling considerations	(Nov 05)
30.		Describe each tool that has enabled the elevation of software design and to higher abstraction levels. (Jun 06)	d hardware design
31.	i. ii. iii iv.	Explain the function and use of the following test equipment for development Multimeter Oscilloscope Logic Analyzer In - Circuit Emulator	embedded system (Apr 05)
32.		Discuss the goals of the typical testing process in embedded systems.	
33.		Write short notes on	

34. Explain the different phases of software development cycle for embedded system

ii. Lab debugging tools for embedded systems software.

i. Logic Analyzer

- 35. Write short notes on Encapsulating Semaphores and Encapsulating queues.
- 36. Discuss the design issues of hard real time systems.
- Discuss the applications of hard real time systems. 37.
- 38. Embedded System software design is an art as much as it is science. Discuss.
- 39. What are the main issues of Embedded Software design?
- 40. Discuss why software testing is critical in Embedded Systems?
- 41. What is the role of linkers / locators for embedded systems. Explain by taking address relocation into account?
- 42. Explain objections, limitations and short comments of a real time embedded systems?

UNIT-VIII

- 1. Write short notes on SHARC processor and Internet enabled system. (Nov 13)
- 2. Explain memory organization of ARM processor is different from conventional general purpose processors memory organization. (Nov 13)
- Describe the problems faced in designing an RTOS. What techniques are used to overcome 3. (Dec 12) it.
- List out Fixed point ALU operations in SHARC processor and explain. (Nov 11) 4. i. ii. How many General purpose registers are there in the SHARC processor and explain.
- Give hardware and software at functional level for designing elevator controller using 5. basic design principles using a RTOS. (Nov 11)
- Write two applications of ARM processor-based systems with functional block diagram for 6. each application and explain its working.
- 7. i. Compare and contrast ARM Bus and SHARC Bus. ii. Describe ARM two stage Address translation. (Nov 11)
- 8. i. What are the data types the SHARC support explain ii. Write SHARC assembly code to first read and then write a device memory mapped to location 0x400110. (Nov 10)
- Describe a 10 base-T Ethernet at the following OSI complaint levels of detail. 9. i. Physical ii. Data link
 - iii. Network

 - iv. Transport.
- Describe the various architectural features of one of the SHARC processors of your choice 10. with its functional block diagram. (Nov 10)

(Nov 10)

11.	Describe the general operation of a typical telegraph system in which netw serial ports communicate via tasks for printing serial data received using DD protocol stack. Assume suitable data with a functional block diagram.	ork port and P and ADSP (Nov 10)
12. i. ii.	Write a brief note on Memory organization of ARM processor Fixed point ALU in SHARC	(Nov09)
13. i ii.	Write a brief note on Distributed embedded architecture IP packet structure.	(Nov 09)
14. i. ii.	Write a note on Architectural features of ARM I2C bus	(Nov 09)
15. i. ii.	Write a brief notes on CAN Bus architecture Programming model of ARM.	(Nov 09)
16.	Explain in detail about distributed Embedded Architectures.	(Nov 08)
17. i. ii.	Write notes on: CAN bus SHARC Link ports.	(Nov 08)
18. i. ii.	Explain in detail instruction level parallelism. Give a note on Internet-enabled systems.	(Nov 08)
19. i. ii.	Write notes on the following: I ² C Bus SHARC Link ports.	(Nov 08)

- 20. Why serial communication facility is required in embedded systems? What are the communication parameters and explain the steps involved in typical serial data transmit and receive programs with the help of flow charts. (Nov06)
- 21. Discuss about serial communication programming. (Apr 06)
- 22. Describe a PC serial interface at the following OSI-compliant levels of detail:
 - i. physical
 - ii. data link
- 23. Describe an I^2C bus at the following OSI-compliant levels of detail:
 - i. physical
 - ii. data link
 - iii. network
 - iv. transport
- 24. Write about ARM architectures.
- 25. Write about SHARC architectures.

- 26. Why we build network embedded systems.
- 27. Explain distributed embedded architectures and state why they are needed.
- 28. Explain in detail about networks for embedded systems.
- 29. Write in detail about I^2C bus.
- 30. Write in detail about CAN bus.